Crystal structures of drugs: advances in determination, prediction and engineering
Most marketed pharmaceuticals consist of molecular crystals. The arrangement of the molecules in a crystal determines its physical properties and, in certain cases, its chemical properties, and so greatly influences the processing and formulation of solid pharmaceuticals, as well as key drug properties such as dissolution rate and stability. A thorough understanding of the relationships between physical structures and the properties of pharmaceutical solids is therefore important in selecting the most suitable form of an active pharmaceutical ingredient for development into a drug product. In this article, we review the different crystal forms of pharmaceuticals, the challenges that they present and recent advances in crystal structure determination. We then discuss computational approaches for predicting crystal properties. Finally, we review the analysis of crystal structures in furthering crystal engineering to design novel pharmaceutical compounds with desired physical and mechanical properties.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
206,07 € per year
only 17,17 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Predicting crystal form stability under real-world conditions
Article Open access 08 November 2023
Article 16 October 2023
Reliable crystal structure predictions from first principles
Article Open access 02 June 2022
References
- Vippagunta, S. R., Brittain, H. G. & Grant, D. J. W. Crystalline solids. Adv. Drug Deliv. Rev.48, 3–26 (2001). Review of the structure and properties of crystalline pharmaceuticals.ArticleCASPubMedGoogle Scholar
- Byrn, S. R., Pfeiffer, R. R. & Stowell, J. G. Solid State Chemistry of Drugs (SSCI, West Lafayette, 1999). Google Scholar
- Hancock, B. C. & Zografi, G. Characteristics and significance of the amorphous state in pharmaceutical systems. J. Pharm. Sci.86, 1–12 (1997). ArticleCASPubMedGoogle Scholar
- Borka, L. & Haleblian, J. K. Crystal polymorphism of pharmaceuticals. Acta Pharm. Jugosl.40, 71–94 (1990). CASGoogle Scholar
- Haleblian, J. K. Characterization of habits and crystalline modification of solids and their pharmaceutical applications. J. Pharm. Sci.64, 1269–1288 (1975). ArticleCASPubMedGoogle Scholar
- Brittain, H. G. & Fiese, E. F. in Polymorphism in Pharmaceutical Solids (ed. Brittain, H. G.) 331–362 (Marcel Dekker, New York, 1999). Google Scholar
- Phadnis, N. V. & Suryanarayanan, R. Polymorphism in anhydrous theophylline: implications on the dissolution rate of theophylline tablets. J. Pharm. Sci.86, 1256–1263 (1997). ArticleCASPubMedGoogle Scholar
- Otsuka, M. & Matsuda, Y. Effects of environmental temperature and compression energy on polymorphic transformation during tableting. Drug Dev. Ind. Pharm.19, 2241–2269 (1993). ArticleCASGoogle Scholar
- Otsuka, M., Hasegawa, H. & Matsuda, Y. Effect of polymorphic transformation during the extrusion-granulation process on the pharmaceutical properties of carbamazepine granules. Chem. Pharm. Bull.45, 894–898 (1997). ArticleCASGoogle Scholar
- Otsuka, M., Hasegawa, H. & Matsuda, Y. Effect of polymorphic forms of bulk powders on pharmaceutical properties of carbamazepine granules. Chem. Pharm. Bull.47, 852–856 (1999). ArticleCASGoogle Scholar
- Otsuka, M., Nakanishi, M. & Matsuda, Y. Effects of crystalline form on the tableting compression mechanism of phenobarbital polymorphs. Drug Dev. Ind. Pharm.25, 205–215 (1999). ArticleCASPubMedGoogle Scholar
- Otsuka, M., Ohtani, H., Otsuka, K. & Kaneniwa, N. Effect of humidity on solid-state isomerization of various kinds of lactose during grinding. J. Pharm. Pharmacol.45, 2–5 (1993). ArticleCASPubMedGoogle Scholar
- Wong, M. W. Y. & Mitchell, A. G. Physicochemical characterization of a phase change produced during the wet granulation of chlorpromazine hydrochloride and its effects on tableting. Int. J. Pharm.88, 261–273 (1992). ArticleCASGoogle Scholar
- Miyamae, A. et al. X-ray powder diffraction study on the grinding effect of the polymorphs of a novel and orally effective uricosuric agent: FR76505. Drug Dev. Ind. Pharm.20, 2881–2897 (1994). ArticleCASGoogle Scholar
- Chongprasert, S. et al. Effects of freeze-dry processing conditions on the crystallization of pentamidine isethionate. J. Pharm. Sci.87, 1155–1160 (1998). ArticleCASPubMedGoogle Scholar
- Morris, K. R., Griesser, U. J., Eckhardt, C. J. & Stowell, J. G. Theoretical approaches to physical transformations of active pharmaceutical ingredients during manufacturing processes. Adv. Drug Deliv. Rev.48, 91–114 (2001). Explains the importance of crystal structure in pharmaceutical processing.ArticleCASPubMedGoogle Scholar
- Morris, K. R. et al. Advances in pharmaceutical materials and processing. Pharm. Sci. Technol. Today1, 235–245 (1998). ArticleCASGoogle Scholar
- Khankari, R. K. & Grant, D. J. W. Pharmaceutical hydrates. Thermochim. Acta248, 61–79 (1995). ArticleCASGoogle Scholar
- Grant, D. J. W. in Polymorphism in Pharmaceutical Solids (ed. Brittain, H. G.) 1–33 (Marcel Dekker, New York, 1999). Google Scholar
- Ghosh, S., Ojala, W. H., Gleason, W. B. & Grant, D. J. W. Relationships between crystal structures, thermal properties and solvate stability of dialkylhydroxypyridones and their formic acid solvates. J. Pharm. Sci.84, 1392–1399 (1995). ArticleCASPubMedGoogle Scholar
- Ojala, W. H., Khankari, R. K., Grant, D. J. W. & Gleason, W. B. Crystal structures and physical chemical properties of nedocromil zinc heptahydrate and nedocromil magnesium pentahydrate. J. Chem. Crystallog.26, 167–178 (1996). ArticleCASGoogle Scholar
- Giordiano, F. et al. Physical properties of parabens and their mixtures: solubility in water, thermal behavior, and crystal structures. J. Pharm. Sci.88, 1210–1216 (1999). ArticleCASGoogle Scholar
- Zhu, H. J., Young, V. G. Jr & Grant, D. J. W. Crystal structure and thermal behavior of nedocromil nickel octahydrate. Int. J. Pharm.232, 23–33 (2002). ArticleCASPubMedGoogle Scholar
- Brittain, H. G. The impact of polymorphism on drug development: a regulatory viewpoint. Am. Pharm. Rev.3, 67–68, 70 (2000). Explains the regulatory issues related to the polymorphism of pharmaceuticals.CASGoogle Scholar
- Bernstein, J. Polymorphism in Molecular Crystals (Oxford Univ. Press, New York, 2002). Comprehensively summarizes the current knowledge and understanding of the polymorphism of molecular crystals.Google Scholar
- Morris, K. R. in Polymorphism in Pharmaceutical Solids (ed. Brittain, H. G.) 125–181 (Marcel Dekker, New York, 1999). Google Scholar
- Andreetti, G. D. Crystallographic studies of inclusion compounds. Inclusion Compounds3, 129–146 (1984). CASGoogle Scholar
- Lipkowski, J. in Crystallography of Supramolecular Compounds NATO Science Series C Vol. 480 (eds Tsoucaris, G. et al.) 265–283 (Kluwer Academic, Boston, 1996). BookGoogle Scholar
- Brittain, H. G. & Grant D. J. W. in Polymorphism in Pharmaceutical Solids (ed. Brittain, H. G.) 279–330 (Marcel Dekker, New York, 1999). Google Scholar
- Bechtloff, B., Nordhoff, S. & Ulrich, J. Pseudopolymorphs in industrial use. Cryst. Res. Technol.36, 1315–1328 (2001). Explains the importance of pseudopolymorphs (solvates and hydrates) in the pharmaceutical industry.ArticleCASGoogle Scholar
- Berge, S. M., Bighley, L. D. & Monkhouse, D. C. Pharmaceutical salts. J. Pharm. Sci.66, 1–19 (1977). ArticleCASPubMedGoogle Scholar
- Neau, S. H. in Water-Insoluble Drug Formations (ed. Liu, R.) 405–425 (Interpharm, Buffalo Grove, 2000). Google Scholar
- Puddipeddi, M., Serajuddin, A. T. M., Grant, D. J. W. & Stahl, P. H. in Handbook of Pharmaceutical Salts: Properties, Selection, and Use (eds Stahl, P. H. & Wermuth, C. G.) 19–38 (Wiley, Weinheim, 2002). Google Scholar
- Giron, D. & Grant, D. J. W. in Handbook of Pharmaceutical Salts: Properties, Selection, and Use (eds Stahl, P. H. & Wermuth, C. G.) 41–81 (Wiley, Weinheim, 2002). Explains the importance of salt forms of pharmaceuticals in the stabilization and processing of pharmaceutical formulations.Google Scholar
- Stahl, P. H. & Byrn, S. R. in Molecular Modeling Applications in Crystallization (ed. Myerson, A. S.) 313–345 (Cambridge Univ. Press, New York, 1999). BookGoogle Scholar
- Shah, R. D. & Nafie, L. A. Spectroscopic methods for determining enantiomeric purity and absolute configuration in chiral pharmaceutical molecules. Curr. Opin. Drug Discov. Devel.4, 764–775 (2001). CASPubMedGoogle Scholar
- van Eikeren, P. Commercial manufacture of chiral pharmaceuticals. Chiral Separations 9–35 (1997).
- Gu, C. H. & Grant, D. J. W. in Handbook of Experimental Pharmacology: Stereochemical Aspects of Drug Action and Disposition Vol. 153 (eds Eichelbaum M., Testa, B. & Somogyi, A.) 113–137 (Springer, Berlin, 2003). Explains the structural basis of the solid-state properties of chiral pharmaceuticals.BookGoogle Scholar
- Li, Z. J. & Grant, D. J. W. Relationship between physical properties and crystal structures of chiral drugs. J. Pharm. Sci.86, 1073–1078 (1997). ArticleCASPubMedGoogle Scholar
- Abgada, C. O. & York, P. Dehydration of theophylline monohydrate powder: effects of particle size and sample weight. Int. J. Pharm.106, 33–40 (1994). ArticleGoogle Scholar
- Sun, C. & Grant, D. J. W. Improved tableting properties of p-hydroxybenzoic acid by water of crystallization — a molecular insight. Pharm. Res. (in the press).
- Bandopadhyay, R. & Grant, D. J. W. Plasticity and slip system of plate-shaped crystals of L -lysine monohydrochloride dihydrate. Pharm. Res.19, 491–496 (2002). ArticleGoogle Scholar
- Sun, C. & Grant, D. J. W. Influence of crystal structure on the tableting properties of sulfamerazine polymorphs. Pharm. Res., 18, 274–280 (2001). ArticleCASPubMedGoogle Scholar
- Cullity, B. D. Elements of X-ray Diffraction 3rd edn (Prentice Hall, New Jersey, 2001). Provides an excellent introduction to crystal structures and X-ray crystallography.Google Scholar
- Buerger, M. J. Elementary Crystallography 253–273 (Wiley Interscience, New York, 1963). Google Scholar
- Zorky, P. M. Symmetry, pseudosymmetry and hypersymmetry of organic crystals. J. Mol. Struct.374, 9–28 (1996). CASGoogle Scholar
- Cambridge Crystallographic Data Centre, Cambridge Structural Database, University Chemical Laboratory, Cambridge, UK (1999). This databank includes more than 250,000 crystal structures and is a site reference for crystal structure reports.
- Perlstein, J. in Crystal Engineering: from Molecules and Crystals to Materials NATO Science Series C Vol. 538 (eds Braga, D., Grepini, F. & Orpen, G. A.) 23–42 (Kluwer Academic, Boston, 1999). Google Scholar
- Buckingham, A. D. in Crystal Engineering: the Design and Application of Functional Solids NATO Science Series C Vol. 539 (eds Seddon, K. R. & Zaworotko, M.) 49–68 (Kluwer Academic, Boston, 1999). BookGoogle Scholar
- Pimental, G. C. & McClennan, A. L. The Hydrogen Bond (W. H. Freeman, San Francisco, 1960). Google Scholar
- Scheiner, S. Hydrogen Bonding: A Theoretical Perspective (Oxford Univ. Press, Oxford, 1997). Google Scholar
- Desiraju, G. R. Hydrogen bridges in crystal engineering: interactions without borders. Acc. Chem. Res.35, 565–573 (2002). ArticleCASPubMedGoogle Scholar
- Jeffrey, G. A. An Introduction to Hydrogen Bonding (Oxford Univ. Press, New York, 1997). Google Scholar
- Desiraju, G. R. & Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology (IUCr Monographs on Crystallography 9) 15–47 (Oxford Univ. Press, New York, 1999). Google Scholar
- Beyer, A., Karpfen, A. & Schuster, P. Energy surfaces of hydrogen complexes in the vapour phase. Topics Curr. Chem.120, 1–40 (1984). ArticleCASGoogle Scholar
- Perlstein, J. Molecular self-assemblies 4. Using Kitaigorodskii's Aufbau principle for quantitatively predicting the packing geometry of semiflexible organic molecules in translation monolayer aggregates. J. Am. Chem. Soc.116, 11420–11432 (1994). ArticleCASGoogle Scholar
- Smith, E. R. Electrostatic energy in ionic crystals. Proc. R. Soc. Lond. A375, 475–505 (1981). ArticleCASGoogle Scholar
- Haleblian, J. K. & McCrone, W. C. Pharmaceutical applications of polymorphism. J. Pharm. Sci.58, 911–929 (1969). ArticleCASPubMedGoogle Scholar
- Burger, A. & Ramberger, R. On the polymorphism of pharmaceuticals and other molecular crystals. I. Theory of thermodynamic rules. Mikrochim. ActaII, 259–271 (1979). ArticleGoogle Scholar
- Burger, A. & Ramberger, R. On the polymorphism of pharmaceuticals and other molecular crystals. II. Applicability of thermodynamic rules. Mikrochim. ActaII, 273–316 (1979). ArticleGoogle Scholar
- Henck, J. O. & Kuhnert-Brandstatter, M. Demonstration of the terms enantiotropy and monotropy in polymorphism research exemplified by flurbiprofen. J. Pharm. Sci.88, 103–108 (1999). ArticleCASPubMedGoogle Scholar
- Yu, L., Reutzel, S. M. & Stephenson, G. A. Physical characterization of polymorphic drugs: an integrated characterization strategy. Pharm. Sci. Technol. Today1, 118–127 (1998). ArticleCASGoogle Scholar
- Grunenberg, A., Henck, J. O. & Siesler, H. W. Theoretical derivation and practical application of energy/temperature diagrams as an instrument in preformulation studies of polymorphic drug substances. Int. J. Pharm.129, 147–158 (1996). ArticleCASGoogle Scholar
- Yu, L. Inferring thermodynamic stability relationship of polymorphs from melting data. J. Pharm. Sci.84, 966–974 (1995). ArticleCASPubMedGoogle Scholar
- Gu, C. H., Young, V. Jr & Grant, D. J. W. Polymorph screening: influence of solvents on the rate of solvent-mediated polymorphic transformation. J. Pharm. Sci.90, 1878–1890 (2001). ArticleCASPubMedGoogle Scholar
- Toscani, S. An up-to-date approach to drug polymorphism. Thermochim. Acta321, 73–79 (1998). ArticleCASGoogle Scholar
- Stahl, P. H. in Towards Better Safety of Drugs and Pharmaceutical Products (ed. Braimer, D. D.) 265–280 (Elsevier/North-Holland Biomedical, Amsterdam, 1980). Google Scholar
- Giron, D. et al. Solid state characterizations of pharmaceutical hydrates. J. Thermal Anal. Cal.68, 453–465 (2002). ArticleCASGoogle Scholar
- Morris, K. & Rodriguez-Hornedo, N. in Encyclopaedia of Pharmaceutical Technology Vol. 7 (eds Swarbrick, J. & Boylan, J. C.) 393–440 (Marcel Dekker, New York, 1993). Google Scholar
- Florey, K. in Analytical Profiles of Drug Substances Vol. 2 (ed. Florey, K.) 1–62 (Academic, New York, 1973). Google Scholar
- Sugawara, Y., Kamiya, N., Iwasaki, H., Ito, T. & Satow, Y. Humidity controlled reversible structure transition of disodium adenosine 5'-triphosphate between dihydrate and trihydrate in a single crystal state. J. Am. Chem. Soc.113, 5440–5445 (1991). ArticleCASGoogle Scholar
- Sun, C., Zhou, D., Grant, D. J. W. & Young, V. G. Jr. Theophylline monohydrate. Acta Cryst. E58, O368–O370 (2002). ArticleCASGoogle Scholar
- Cox, J. S. G., Woodgard, G. D. & McCrone, W. C. Solid state chemistry of cromolyn sodium (disodium cromoglycate). J. Pharm. Sci.60, 1458–1465 (1971). ArticleCASPubMedGoogle Scholar
- Stephenson, G. A. & Diseroad, B. A. Structural relationship and desolvation behaviour of cromolyn cefazolin and fenoprofen sodium hydrates. Int. J. Pharm.198, 167–177 (2000). ArticleCASPubMedGoogle Scholar
- Chen, L. R., Young, V. G., Lechuga-Ballesteros, D. & Grant, D. J. W. Solid state behavior of cromolyn sodium hydrates. J. Pharm. Sci.88, 1191–1200 (1999). ArticleCASPubMedGoogle Scholar
- Zhu, J., Padden, B. E., Munson, E. J. & Grant, D. J. W. Physicochemical characterization of nedocromil bivalent metal salt hydrates. 2. Nedocromil zinc. J. Pharm. Sci.86, 418–428 (1997). ArticleCASPubMedGoogle Scholar
- Khankari, R. K., Ojala, W. H., Gleason, W. B. & Grant, D. J. W. Crystal structure of nedocromil sodium heptahemihydrate and its comparison with that of nedocromil sodium trihydrate. J. Chem. Crystallogr.25, 859–866 (1995). ArticleGoogle Scholar
- Ahlqvist, M. U. A. & Taylor, L. S. Water dynamics in channel hydrates investigated using H/D exchange. Int. J. Pharm.241, 253–261 (2002). ArticleCASPubMedGoogle Scholar
- Li, Z. J. & Grant, D. J. W. Relationship between physical properties and crystal structures of chiral drugs. J. Pharm. Sci.86, 1073–1078 (1997). ArticleCASPubMedGoogle Scholar
- Reddy, I. K., Kommuru, T. R., Zaghloul, A. A. & Khan, M. A. Chirality and its implications in transdermal drug development. Crit. Rev. Ther. Drug Carrier Syst.17, 285–325 (2000). ArticleCASPubMedGoogle Scholar
- Collet, A. & Vigne-Maeder, F. Increase of the occurrence of spontaneous resolution due to the crystallization of racemates under high pressure. New J. Chem.19, 877–880 (1995). CASGoogle Scholar
- Jacques, J., Collet, A. & Wilen, S. H. Enantiomers, Racemates, and Resolutions 3–213 (John Wiley & Sons, New York, 1981). Google Scholar
- Burger, A., Rollinger, J. M. & Brueggeller, P. Binary system of (R)- and (S)-nitrendipine-polymorphism and structure. J. Pharm. Sci.86, 674–679 (1997). ArticleCASPubMedGoogle Scholar
- Kuhnert-Brandstaetter, M. & Ulmer, R. Contribution to the thermal analysis of optical antipodes-mandelic acid. Mikrochim. Acta5, 927–935 (1974). ArticleGoogle Scholar
- Langhammer, L. Binary systems of enantiomeric nicotine derivatives. Arch. Pharm.308, 933–939 (1975). ArticleCASGoogle Scholar
- Zhang, G. G. Z., Paspal, S. Y. L., Suryanarayanan, R. & Grant, D. J. W. Racemic species of sodium ibuprofen: characterization and polymorphic relationships. J. Pharm. Sci.92, 1356–1366 (2003). ArticleCASPubMedGoogle Scholar
- Jacques, J. & Gabard, J. Optical antipode mixtures. III. Solubility diagrams for several types of racemates. Bull. Soc. Chim. Fr.1, 342–350 (1972). Google Scholar
- Flack, H. D. Chiral and achiral crystal structure. Helv. Chim. Acta86, 907–921 (2003). ArticleGoogle Scholar
- Bel'skii, V. K. & Zorkii, P. M. Distribution of organic homomolecular crystals by chiral types and structural classes. Acta Cryst.A33, 1004–1006 (1977). CASGoogle Scholar
- Stout, G. H. & Jensen, L. H. X-Ray Structure Determination: A Practical Guide 2nd edn (John Wiley & Sons, New York, 1989). Google Scholar
- Fagan, P. G., Hammond, R. B., Roberts, K. J., Docherty, R. & Edmondson, M. in Crystal Growth of Organic Materials Third International Workshop on Crystal Growth of Organic Materials Conference (eds Myerson, A., Green, D.A. & Meenan, P.) 22–27 (Oxford Univ. Press, New York, 1996). Google Scholar
- Jones, P. G. Crystal growing. Chem. Br.17, 222–225 (1981). Describes the common methods for growing single crystals.CASGoogle Scholar
- Threlfall, T. L. Analysis of organic polymorphs, a review. Analyst120, 2435–2460 (1995). ArticleCASGoogle Scholar
- Guillory, J. K. in Polymorphism in Pharmaceutical Solids (ed. Brittain, H. G.) 183–226 (Marcel Dekker, New York, 1999). Google Scholar
- Mullin, J. W. Crystallization 4th edn (Butterworth–Heinemann, Boston, 2001). Google Scholar
- Mitchell, C. A., Yu, L. & Ward, M. D. Selective nucleation and discovery of organic polymorphs through epitaxy with single crystal substrate. J. Am. Chem. Soc.123, 10830–10839 (2001). ArticleCASPubMedGoogle Scholar
- Hilden, J. L. et al. Capillary precipitation of a highly polymorphic organic compound. Cryst. Growth Des.3, 921–926 (2003). ArticleCASGoogle Scholar
- Zaccaro, J., Matic, J., Myerson, A. S. & Garetz, B. A. Nonphotochemical, laser-induced nucleation of supersaturated aqueous glycine produces unexpected γ-polymorph. Cryst. Growth Des.1, 5–8 (2001). References 96–98 describe newer methods of generating polymorphs: epitaxy, capillary crystallization and laser-induced nucleation.ArticleCASGoogle Scholar
- Beckmann, W., Otto, W. & Budde, U. Crystallization of the stable polymorph of hydroxytriendione: seeding process and effects of purity. Org. Process Res. Dev.5, 387–392 (2001). ArticleCASGoogle Scholar
- Wang, B., Lu, Z. P., Shi, E. W. & Zhong, W. Z. Twinning morphologies and mechanisms of β-BaB2O4 (BBO) crystal grown by TSSG method. Cryst. Res. Technol.33, 929–935 (1998). ArticleCASGoogle Scholar
- Wadhawan, V. K. A tensor classification of twinning in crystals. Acta Cryst. A53, 546–555 (1997). ArticleGoogle Scholar
- von Laue, M. Eine quantitative prüfung der theorie für die interferenz-erscheinungen bei röntgenstrahlen. Sitz. Math. Phys. Klasse Bayer. Akad. Wiss. 363–373 (1912).
- Bragg, W. L. Diffraction of short electromagnetic waves by a crystal. Proc. Cambridge Philos. Soc.17, 43–57 (1913). CASGoogle Scholar
- Giacovazzo, C. Fundamentals of Crystallography (Oxford Univ. Press, New York, 2002). Google Scholar
- Hanh, T. International Table of Crystallography Vol. A 5th edn (Kluwer Academic, Dordrecht, 2002). Google Scholar
- Sayre, D. in Computational Crystallography (ed. Sayre, D.) 65–140 (Claredon, Oxford, 1982). Google Scholar
- Giacovazzo, C. in International Tables for Crystallography 2nd edn Vol. B (ed. Shmueli, U.) 210–234 (Kluwer Academic, Dordrecht, 2002). Google Scholar
- Giacovazzo, C. Direct Phasing in Crystallography: Fundamentals and Applications (Oxford Univ. Press, Oxford, 1998). Explains the most common technique for solving crystal structures from single crystal X-ray diffraction patterns.Google Scholar
- Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science220, 671–680 (1983). This seminal paper explains the value and the process of simulated annealing.ArticleCASPubMedGoogle Scholar
- Catlow, C. R. A., Thomas, J. M., Freeman, C. M., Wright, P. A. & Bell, R. G. Simulating and predicting crystal structures. Proc. R. Soc. Lond. A442, 85–96 (1993). ArticleCASGoogle Scholar
- Bond, A. D. & Jones, W. Structure prediction as a tool for solution of the crystal structures of metallo-organic complexes using powder X-ray diffraction data. Acta Cryst. B58, 233–243 (2002). ArticleCASGoogle Scholar
- Gavezzotti, A. & Filippini, G. Polymorphic forms of organic crystals at room conditions: thermodynamic and structural implications. J. Am. Chem. Soc.117, 12299–12305 (1995). ArticleCASGoogle Scholar
- Lommerse, J. P. M. et al. A test of crystal structure prediction of small organic molecules. Acta Cryst. B56, 697–714 (2000). ArticleCASGoogle Scholar
- Giovannini, J., Perrin, M. A., Louer, D. & Leveiller, F. Ab initio crystal structure determination of three pharmaceutical compounds from X-ray powder diffraction data. Mater. Sci. Forum2, 582–587 (2001). ArticleGoogle Scholar
- Bond, A. D., Feeder, N., Teat, S. J. & Jones, W. The solid-state structure of 3-hydroxy-4-methyl-2(3H)-thiazolethione: prediction and measurement. Tetrahedron56, 6617–6624 (2000). ArticleCASGoogle Scholar
- Motherwell, W. D. S. et al. Crystal structure prediction of small molecules: a second blind test. Acta Cryst. B58, 647–661 (2002). Describes the results from the most recent Cambridge Crystallographic Data Centre (CCDC) workshop for testing the feasibility of the various programs in predicting the crystal structure of three compounds from their individual molecular structures only.ArticleCASGoogle Scholar
- Freeman, C. M. & Catlow, C. R. A. Structure predictions in inorganic solids. J. Chem. Soc. Chem. Comm.2, 89–91 (1992). ArticleGoogle Scholar
- Gdanitz, R. J. in Theoretical Aspects and Computer Modeling of the Molecular Solid State (ed. Gavezzotti, A.) 185–201 (Wiley, Chichester, 1997). Explains theab initiomethod of crystal structure prediction.Google Scholar
- Karfunkel, H. R. & Gdanitz, R. J. Ab initio prediction of possible crystal structures for general organic molecules. J. Comp. Chem.13, 1171–1183 (1992). ArticleCASGoogle Scholar
- Smith, E. D. L. et al. The determination of the crystal structure of anhydrous theophylline by X-ray powder diffraction with a systematic search algorithm, lattice energy calculations, and 13 C and 15 N solid-state NMR: a question of polymorphism in a given unit cell. J. Phys. Chem. B105, 5818–5826 (2001). ArticleCASGoogle Scholar
- Ko, G. H. & Fink, W. H. A combined quantum chemistry and classical molecular interaction energy method for the determination of crystal geometries and energies. J. Chem. Phys.116, 747–754 (2002). ArticleCASGoogle Scholar
- Gavezzotti, A. Organic crystals: engineering and design. Curr. Opin. Solid State Mater. Sci.1, 501–505 (1996). ArticleCASGoogle Scholar
- Buttar, D., Charlton, M. H., Docherty, R. & Starbuck, J. Theoretical investigations of conformational aspects of polymorphism. Part 1: o-acetamidobenzamide. J. Chem. Soc. Perkin Trans. I2, 763–772 (1998). ArticleGoogle Scholar
- Childs, S. L. Nonbonded Interactions in Molecular Crystal Structures (Emory Univ., Atlanta, 2001). Google Scholar
- Filippini, G., Gavezzotti, A. & Novoa, J. J. Modelling the crystal structure of the 2-hydronitronylnitroxide radical (HNN): observed and computer-generated polymorphs. Acta Cryst. B55, 543–553 (1999). ArticleCASGoogle Scholar
- Gavezzotti, A. Methods and current trends in the simulation and prediction of organic crystal structures. Nova Acta Leopold.79, 33–46 (1999). CASGoogle Scholar
- Gao, D. W. & Donald, E. Molecular packing groups and ab initio crystal-structure prediction. Acta Cryst. A55, 621–627 (1999). ArticleCASGoogle Scholar
- Williams, D. E. I. in Crystal Engineering: From Molecules and Crystals to Materials NATO Science Series C Vol. 538 (eds Braga, D., Grepini, F. & Orpen, G. A.) 295–310 (Kluwer Academic, Boston, 1999). BookGoogle Scholar
- Mooij, W. T. M., van Eijck, B. P. & Kroon, J. Ab initio crystal structure predictions for flexible hydrogen-bonded molecules. J. Am. Chem. Soc.122, 3500–3505 (2000). ArticleCASGoogle Scholar
- Allen, F. H., Kennard, O. & Taylor, R. Systematic analysis of structural data as a research technique in organic chemistry. Acc. Chem. Res.16, 146–153 (1983). ArticleCASGoogle Scholar
- Sarma, J. A. R. P. & Desiraju, G. R. The supramolecular synthon approach to crystal structure prediction. Cryst. Growth Des.2, 93–100 (2002). ArticleCASGoogle Scholar
- Mooij, W. T. M., van Eijck, B. P. & Kroon, J. Transferable ab initio intermolecular potentials. 2. Validation and application to crystal structure prediction. J. Phys. Chem. A103, 9883–9890 (1999). ArticleCASGoogle Scholar
- Leusen, F. J. J. Ab initio prediction of polymorphs. J. Cryst. Growth166, 900–903 (1996). ArticleCASGoogle Scholar
- Dong, Z. et al. Crystal structure of neotame anhydrate polymorph G. Pharm. Res.19, 1549–1553 (2002). ArticleCASPubMedGoogle Scholar
- Chin, D. N. Improving the efficiency of predicting hydrogen-bonded organic molecules. Trans. Am. Cryst. Assoc.33, 33–43 (1999). Google Scholar
- Gdanitz, R. J. Prediction of molecular crystal structures by Monte Carlo simulated annealing without reference to diffraction data. Chem. Phys. Lett.190, 391–396 (1992). Explains the application of the Monte Carlo method in predicting crystal structures.ArticleCASGoogle Scholar
- Hammond, R. B., Roberts, K. J., Docherty, R. & Edmondson, R. B. in Crystal Growth of Organic Materials International Workshop 4th edn (ed. Ulrich, J.) 53–60 (Shaker, Aachen, 1997). Google Scholar
- Hammond, R. B. et al. Determining the crystal structures of organic solids using x-ray powder diffraction together with molecular and solid state modeling techniques. Molecular Crystals and Liquid Crystals Science and Technology A356, 389–405 (2001). Google Scholar
- Harris, K. D. M. & Tremayne, M. Crystals structure determination from powder diffraction data. Chem. Mater.8, 2554–2570 (1996). Explains the prediction of the crystal structure of compounds from their powder diffraction data only.ArticleCASGoogle Scholar
- Aakeroy, C. B., Beatty, A. M., Tremayne, M., Rowe, D. M. & Seaton, C. C. A combination of X-ray single crystal diffraction and Monte Carlo structure solution from X-ray powder diffraction data in a structural investigation of 5-bromonicotinic acid and solvates thereof. Cryst. Growth Des.1, 377–382 (2001). ArticleCASGoogle Scholar
- Will, G. POWLS: a powder least-squares program. J. Appl. Cryst.12, 483–485 (1979). ArticleCASGoogle Scholar
- Pawley, G. S. Unit-cell refinement from powder diffraction scans. J. Appl. Cryst.14, 357–361 (1981). ArticleCASGoogle Scholar
- Langford, J. I. & Louer, D. High-resolution powder diffraction studies of copper (II) oxide. J. Appl. Cryst.24, 149–155 (1991). ArticleCASGoogle Scholar
- Langford, J. I., Cernik, R. J. & Louer, D. The breadth and shape of instrumental line profiles in high-resolution powder diffraction. J. Appl. Cryst.24, 912–918 (1991). CASGoogle Scholar
- Will, G., Parrish, W. & Huang, T. C. Crystal-structure refinement by profile fitting and least-squares analysis of powder diffractometer data. J. Appl. Cryst.16, 611–622 (1983). ArticleCASGoogle Scholar
- Langford, J. I., Louer, D., Sonneveld, E. J. & Visser, J. W. Applications of total pattern fitting to a study of crystallite size and strain in zinc oxide powder. Powder Diffract.1, 211–221 (1986). ArticleCASGoogle Scholar
- David, W. I. F., Shankland, K. & Shankland, N. Routine determination of molecular crystal structures from powder diffraction data. Chem. Commun. (Camb.)8, 931–932 (1998). ArticleGoogle Scholar
- Shankland, K., David, W. I. F. & Csoka, T. Crystal structure determination from powder diffraction data by the application of a genetic algorithm. Zeit. fuer Kristall.212, 550–552 (1997). CASGoogle Scholar
- Harris, K. D. M., Johnston, R. L. & Kariuki, B. M. The genetic algorithm: foundations and applications in structure solution from powder diffraction data. Acta Cryst. A54, 632–645 (1998). Explains the use of the genetic algorithm for predicting the crystal structure of compounds from their powder diffraction pattern.ArticleGoogle Scholar
- Hammond, R. B., Roberts, K. J., Docherty, R. & Edmondson, M. Computationally assisted structure determination for molecular materials from X-ray powder diffraction data. J. Phys. Chem. B101, 6532–6536 (1997). ArticleCASGoogle Scholar
- Harris, K. D. M., Tremayne, M., Lightfoot, P. & Bruce, P. G. Crystal structure determination from powder diffraction data by Monte Carlo methods. J. Am. Chem. Soc.116, 3543–3547 (1994). ArticleCASGoogle Scholar
- Harris, K. D. M., Johnston, R. L., Kariuki, B. M. & Tremayne, M. A genetic algorithm for crystal structure solution from powder diffraction data. J. Chem. Res. Synop.7, 390–391 (1998). ArticleGoogle Scholar
- Harris, K. D. M. et al. Recent advances in opportunities for solving molecular crystal structures directly from powder diffraction data: new insights in crystal engineering contexts. Cryst. Eng. Comm.4, 356–367 (2002). ArticleCASGoogle Scholar
- Turner, G. W., Tedesco, E., Harris, K. D. M., Jonhston, R. L. & Kariuki, B. M. Implementation of Lamarckian concepts in a genetic algorithm for structure solution from powder diffraction data. Chem. Phys. Lett.321, 183 (2000). ArticleCASGoogle Scholar
- Habershon, S., Turner, G. W., Harris, K. D. M., Johnston, R. L. & Johnston, J. M. Gaining insights into the evolutionary behavior in genetic algorithm calculations, with applications in structure solution from powder diffraction data. Chem. Phys. Lett.353, 185–194 (2002). ArticleCASGoogle Scholar
- Lanning, O. J. et al. Definition of a 'guiding function' in global optimization: a hybrid approach combining energy and R-factor in structure solution from powder diffraction data. Chem. Phys. Lett.317, 296–303 (2000). ArticleCASGoogle Scholar
- Gilmore, C. Maximum entropy and Bayesian statistics in crystallography: a review of practical applications. Acta Cryst. A52, 561–589 (1996). Explains the use of the maximum entropy algorithm for the prediction of the crystal structures of compounds and reviews its application.ArticleGoogle Scholar
- Gilmore, C. J., Shankland, K. & Bricogne, G. Applications of the maximum entropy method to powder diffraction and electron crystallography. Proc. R. Soc. Lond. A442, 97–111 (1993). ArticleCASGoogle Scholar
- Presented at the fifteenth annual meeting of the National Science Teachers Association, 1966 in New York City, and reprinted from The Physics Teacher Vol. 7, issue 6, 1968, pp. 313–320 by permission of the editor and the author.
- Braga, D., Desiraju, G. R., Miller, J. S., Guy Orpen, A. & Price, S. Innovation in crystal engineering. Cryst. Eng. Comm.4, 500–509 (2002). ArticleCASGoogle Scholar
- Pepinsky, R. Crystal engineering-new concept in crystallography. Phys. Rev. II100, 971 (1955). CASGoogle Scholar
- Schmidt, G. M. J. Photodimerization in solid state. Pure Appl. Chem.647, 647–678 (1971). ArticleGoogle Scholar
- Panunto, T. W., Lipkowska, Z. U., Johnson, R. & Etter, M. C. Hydrogen-bond formation in nitroanilines: the first step in designing acentric materials. J. Am. Chem. Soc.109, 7786–7797 (1987). ArticleCASGoogle Scholar
- Braga, D. & Fabrizia, G. in Crystal Engineering: From Molecules and Crystals to Materials (eds Braga, D., Grepioni, F. & Guy Orpen, A.) 421–441 (Kluwer Academic, Boston, 1999). Comprehensive work summarizing the recent achievements and future trends in crystal engineering.BookGoogle Scholar
- Desiraju, G. R. Supramolecular synthons in crystal engineering — a new organic synthesis. Angew. Chem. Int. Edn Eng.34, 2311–2327 (1995) ArticleCASGoogle Scholar
- Walsh, B. R. D. et al. Crystal engineering of the composition of pharmaceutical phases. Chem. Commun.2, 186–187 (2003). ArticleCASGoogle Scholar
- Bis, J. A., Shattock, T. R. & Zaworotko, M. J. Design of binary crystals that contain pharmaceutical molecules, Abstracts of Papers, 225th ACS National Meeting, New Orleans, LA, United States, March 23–27 (2003).
- McMahon, J. A. & Zaworotko, M. J. Crystal engineering of novel pharmaceutical phases, Abstracts of Papers, 225th ACS National Meeting, New Orleans, LA, United States, March 23–27 (2003).
- Fleischman, S., Morales, L. A. & Zaworotko, M. J. Crystal engineering of binary crystals that contain pharmaceutical molecules, Abstracts of Papers, 223rd ACS National Meeting, Orlando, FL, United States, April 7–11 (2002).
- Remenar, J. F. et al. Crystal engineering of novel cocrystals of a triazole drug with 1,4-dicarboxylic acids. J. Am. Chem. Soc.125, 8456–8457 (2003). ArticleCASPubMedGoogle Scholar
- Payne, R. S., Roberts, R. J. & Rowe, R. C. The mechanical properties of two forms of primidone predicted from their crystal structures. Int. J. Pharm.145, 165–173 (1996). ArticleCASGoogle Scholar
- Roberts, R. J., Payne, R. S. & Rowe, R. C. Mechanical property predictions for polymorphs of sulphathiazole and carbamazepine. Eur. J. Pharm. Sci.9, 277–283 (2000). ArticleCASPubMedGoogle Scholar
- Roberts, R. J., Rowe, R. C. & Kendall, K. Brittle–ductile transitions in die compaction of sodium chloride. Chem. Eng. Sci.44, 1647–1651 (1989). ArticleCASGoogle Scholar
- Roberts, R. J. & Rowe, R. C. Determination of the critical stress intensity factor (KIC) of microcrystalline cellulose using radially edge-cracked tablets. Int. J. Pharm.52, 213–219 (1989). ArticleCASGoogle Scholar
- Bassam, F., York, P., Rowe, R. C. & Roberts, R. J. Young's modulus of powders used as pharmaceutical excipients. Int. J. Pharm.64, 55–60 (1990). ArticleCASGoogle Scholar
- Roberts, R. J., Rowe, R. C. & York, P. The relationship between Young's modulus of elasticity of organic solids and their molecular structure. Powder Technol.65, 139–146 (1991). ArticleCASGoogle Scholar
- Nangia, A. Database research in crystal engineering. Cryst. Eng. Comm.4, 93–101 (2002). ArticleCASGoogle Scholar
- Gavezzotti, A. Ten years of experience in polymorph prediction: what next? Cryst. Eng. Comm.4, 343–347 (2002). ArticleCASGoogle Scholar
- Rohl, A. L. Computer prediction of crystal morphology. Curr. Opin. Solid State Mater. Sci.7, 21–26 (2003). ArticleCASGoogle Scholar
- Rajeswaran, M. et al. Three-dimensional structure determination of N-(p-tolyl)-dodecylsulfonamide from powder diffraction data and validation of structure using solid-state NMR spectroscopy. J. Am. Chem. Soc.124, 14450–14459 (2002). ArticleCASPubMedGoogle Scholar
- Tishmack, P. A., Bugay, D. E. & Byrn, S. R Solid-state nuclear magnetic resonance spectroscopy — pharmaceutical applications. J. Pharm. Sci.92, 441–474 (2003). ArticleCASPubMedGoogle Scholar
- Reutzel-Edens, S. M. & Bush, J. K. Solid-state NMR spectroscopy of small molecules: from NMR crystallography to the characterization of solid oral dosage forms. Am. Pharm. Rev.5, 112–115 (2002). CASGoogle Scholar
- Bugay, D. E. Characterization of the solid-state:spectroscopic techniques. Adv. Drug Del. Rev.48, 43–65 (2001). ArticleCASGoogle Scholar
- Taylor, L. S. & Langklide, F. W. Evaluation of solid-state forms present in tablets by Raman spectroscopy. J. Pharm. Sci., 89, 1342–1353 (2000). ArticleCASPubMedGoogle Scholar
- Kempf, D. J. et al. ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans. Proc. Natl Acad. Sci. USA92, 2484–2488 (1995). ArticleCASPubMedPubMed CentralGoogle Scholar
- Chemburkar, S. R. et al. Dealing with the impact of ritonavir polymorphs on the late stages of bulk drug process development. Org. Process Res. Dev.4, 413–417 (2000). ArticleCASGoogle Scholar
- Young, A. The Rietveld Method International Union of Crystallography (Oxford Univ. Press, New York, 1993). Explains the Rietveld refinement method in detail.Google Scholar
- McCusker, L. B., von Dreele, R. B., Cox, D. E., Louer, D. & Scardi, P. Rietveld refinement guidelines. J. Appl. Cryst.32, 36–50 (1999). ArticleCASGoogle Scholar
- Stephenson, G. A. & Young, R. Potential applications of Rietveld analysis in the pharmaceutical industry. Am. Pharm. Rev.4, 46–51 (2001). CASGoogle Scholar
- Kisi, E. H. Rietveld analysis of powder diffraction patterns. Mater. Forum18, 135–153 (1994). CASGoogle Scholar
- Rietveld, H. M. Profile refinement method for nuclear and magnetic structures. J. Appl. Cryst.2, 65–71 (1969). ArticleCASGoogle Scholar
Acknowledgements
We thank A. Sheth for kindly reviewing the manuscript and for his valuable suggestions.