Crystal structures of drugs: advances in determination, prediction and engineering

Most marketed pharmaceuticals consist of molecular crystals. The arrangement of the molecules in a crystal determines its physical properties and, in certain cases, its chemical properties, and so greatly influences the processing and formulation of solid pharmaceuticals, as well as key drug properties such as dissolution rate and stability. A thorough understanding of the relationships between physical structures and the properties of pharmaceutical solids is therefore important in selecting the most suitable form of an active pharmaceutical ingredient for development into a drug product. In this article, we review the different crystal forms of pharmaceuticals, the challenges that they present and recent advances in crystal structure determination. We then discuss computational approaches for predicting crystal properties. Finally, we review the analysis of crystal structures in furthering crystal engineering to design novel pharmaceutical compounds with desired physical and mechanical properties.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 12 print issues and online access

206,07 € per year

only 17,17 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Predicting crystal form stability under real-world conditions

Article Open access 08 November 2023

Accurate computational design of three-dimensional protein crystals

Article 16 October 2023

Reliable crystal structure predictions from first principles

Article Open access 02 June 2022

References

  1. Vippagunta, S. R., Brittain, H. G. & Grant, D. J. W. Crystalline solids. Adv. Drug Deliv. Rev.48, 3–26 (2001). Review of the structure and properties of crystalline pharmaceuticals.ArticleCASPubMedGoogle Scholar
  2. Byrn, S. R., Pfeiffer, R. R. & Stowell, J. G. Solid State Chemistry of Drugs (SSCI, West Lafayette, 1999). Google Scholar
  3. Hancock, B. C. & Zografi, G. Characteristics and significance of the amorphous state in pharmaceutical systems. J. Pharm. Sci.86, 1–12 (1997). ArticleCASPubMedGoogle Scholar
  4. Borka, L. & Haleblian, J. K. Crystal polymorphism of pharmaceuticals. Acta Pharm. Jugosl.40, 71–94 (1990). CASGoogle Scholar
  5. Haleblian, J. K. Characterization of habits and crystalline modification of solids and their pharmaceutical applications. J. Pharm. Sci.64, 1269–1288 (1975). ArticleCASPubMedGoogle Scholar
  6. Brittain, H. G. & Fiese, E. F. in Polymorphism in Pharmaceutical Solids (ed. Brittain, H. G.) 331–362 (Marcel Dekker, New York, 1999). Google Scholar
  7. Phadnis, N. V. & Suryanarayanan, R. Polymorphism in anhydrous theophylline: implications on the dissolution rate of theophylline tablets. J. Pharm. Sci.86, 1256–1263 (1997). ArticleCASPubMedGoogle Scholar
  8. Otsuka, M. & Matsuda, Y. Effects of environmental temperature and compression energy on polymorphic transformation during tableting. Drug Dev. Ind. Pharm.19, 2241–2269 (1993). ArticleCASGoogle Scholar
  9. Otsuka, M., Hasegawa, H. & Matsuda, Y. Effect of polymorphic transformation during the extrusion-granulation process on the pharmaceutical properties of carbamazepine granules. Chem. Pharm. Bull.45, 894–898 (1997). ArticleCASGoogle Scholar
  10. Otsuka, M., Hasegawa, H. & Matsuda, Y. Effect of polymorphic forms of bulk powders on pharmaceutical properties of carbamazepine granules. Chem. Pharm. Bull.47, 852–856 (1999). ArticleCASGoogle Scholar
  11. Otsuka, M., Nakanishi, M. & Matsuda, Y. Effects of crystalline form on the tableting compression mechanism of phenobarbital polymorphs. Drug Dev. Ind. Pharm.25, 205–215 (1999). ArticleCASPubMedGoogle Scholar
  12. Otsuka, M., Ohtani, H., Otsuka, K. & Kaneniwa, N. Effect of humidity on solid-state isomerization of various kinds of lactose during grinding. J. Pharm. Pharmacol.45, 2–5 (1993). ArticleCASPubMedGoogle Scholar
  13. Wong, M. W. Y. & Mitchell, A. G. Physicochemical characterization of a phase change produced during the wet granulation of chlorpromazine hydrochloride and its effects on tableting. Int. J. Pharm.88, 261–273 (1992). ArticleCASGoogle Scholar
  14. Miyamae, A. et al. X-ray powder diffraction study on the grinding effect of the polymorphs of a novel and orally effective uricosuric agent: FR76505. Drug Dev. Ind. Pharm.20, 2881–2897 (1994). ArticleCASGoogle Scholar
  15. Chongprasert, S. et al. Effects of freeze-dry processing conditions on the crystallization of pentamidine isethionate. J. Pharm. Sci.87, 1155–1160 (1998). ArticleCASPubMedGoogle Scholar
  16. Morris, K. R., Griesser, U. J., Eckhardt, C. J. & Stowell, J. G. Theoretical approaches to physical transformations of active pharmaceutical ingredients during manufacturing processes. Adv. Drug Deliv. Rev.48, 91–114 (2001). Explains the importance of crystal structure in pharmaceutical processing.ArticleCASPubMedGoogle Scholar
  17. Morris, K. R. et al. Advances in pharmaceutical materials and processing. Pharm. Sci. Technol. Today1, 235–245 (1998). ArticleCASGoogle Scholar
  18. Khankari, R. K. & Grant, D. J. W. Pharmaceutical hydrates. Thermochim. Acta248, 61–79 (1995). ArticleCASGoogle Scholar
  19. Grant, D. J. W. in Polymorphism in Pharmaceutical Solids (ed. Brittain, H. G.) 1–33 (Marcel Dekker, New York, 1999). Google Scholar
  20. Ghosh, S., Ojala, W. H., Gleason, W. B. & Grant, D. J. W. Relationships between crystal structures, thermal properties and solvate stability of dialkylhydroxypyridones and their formic acid solvates. J. Pharm. Sci.84, 1392–1399 (1995). ArticleCASPubMedGoogle Scholar
  21. Ojala, W. H., Khankari, R. K., Grant, D. J. W. & Gleason, W. B. Crystal structures and physical chemical properties of nedocromil zinc heptahydrate and nedocromil magnesium pentahydrate. J. Chem. Crystallog.26, 167–178 (1996). ArticleCASGoogle Scholar
  22. Giordiano, F. et al. Physical properties of parabens and their mixtures: solubility in water, thermal behavior, and crystal structures. J. Pharm. Sci.88, 1210–1216 (1999). ArticleCASGoogle Scholar
  23. Zhu, H. J., Young, V. G. Jr & Grant, D. J. W. Crystal structure and thermal behavior of nedocromil nickel octahydrate. Int. J. Pharm.232, 23–33 (2002). ArticleCASPubMedGoogle Scholar
  24. Brittain, H. G. The impact of polymorphism on drug development: a regulatory viewpoint. Am. Pharm. Rev.3, 67–68, 70 (2000). Explains the regulatory issues related to the polymorphism of pharmaceuticals.CASGoogle Scholar
  25. Bernstein, J. Polymorphism in Molecular Crystals (Oxford Univ. Press, New York, 2002). Comprehensively summarizes the current knowledge and understanding of the polymorphism of molecular crystals.Google Scholar
  26. Morris, K. R. in Polymorphism in Pharmaceutical Solids (ed. Brittain, H. G.) 125–181 (Marcel Dekker, New York, 1999). Google Scholar
  27. Andreetti, G. D. Crystallographic studies of inclusion compounds. Inclusion Compounds3, 129–146 (1984). CASGoogle Scholar
  28. Lipkowski, J. in Crystallography of Supramolecular Compounds NATO Science Series C Vol. 480 (eds Tsoucaris, G. et al.) 265–283 (Kluwer Academic, Boston, 1996). BookGoogle Scholar
  29. Brittain, H. G. & Grant D. J. W. in Polymorphism in Pharmaceutical Solids (ed. Brittain, H. G.) 279–330 (Marcel Dekker, New York, 1999). Google Scholar
  30. Bechtloff, B., Nordhoff, S. & Ulrich, J. Pseudopolymorphs in industrial use. Cryst. Res. Technol.36, 1315–1328 (2001). Explains the importance of pseudopolymorphs (solvates and hydrates) in the pharmaceutical industry.ArticleCASGoogle Scholar
  31. Berge, S. M., Bighley, L. D. & Monkhouse, D. C. Pharmaceutical salts. J. Pharm. Sci.66, 1–19 (1977). ArticleCASPubMedGoogle Scholar
  32. Neau, S. H. in Water-Insoluble Drug Formations (ed. Liu, R.) 405–425 (Interpharm, Buffalo Grove, 2000). Google Scholar
  33. Puddipeddi, M., Serajuddin, A. T. M., Grant, D. J. W. & Stahl, P. H. in Handbook of Pharmaceutical Salts: Properties, Selection, and Use (eds Stahl, P. H. & Wermuth, C. G.) 19–38 (Wiley, Weinheim, 2002). Google Scholar
  34. Giron, D. & Grant, D. J. W. in Handbook of Pharmaceutical Salts: Properties, Selection, and Use (eds Stahl, P. H. & Wermuth, C. G.) 41–81 (Wiley, Weinheim, 2002). Explains the importance of salt forms of pharmaceuticals in the stabilization and processing of pharmaceutical formulations.Google Scholar
  35. Stahl, P. H. & Byrn, S. R. in Molecular Modeling Applications in Crystallization (ed. Myerson, A. S.) 313–345 (Cambridge Univ. Press, New York, 1999). BookGoogle Scholar
  36. Shah, R. D. & Nafie, L. A. Spectroscopic methods for determining enantiomeric purity and absolute configuration in chiral pharmaceutical molecules. Curr. Opin. Drug Discov. Devel.4, 764–775 (2001). CASPubMedGoogle Scholar
  37. van Eikeren, P. Commercial manufacture of chiral pharmaceuticals. Chiral Separations 9–35 (1997).
  38. Gu, C. H. & Grant, D. J. W. in Handbook of Experimental Pharmacology: Stereochemical Aspects of Drug Action and Disposition Vol. 153 (eds Eichelbaum M., Testa, B. & Somogyi, A.) 113–137 (Springer, Berlin, 2003). Explains the structural basis of the solid-state properties of chiral pharmaceuticals.BookGoogle Scholar
  39. Li, Z. J. & Grant, D. J. W. Relationship between physical properties and crystal structures of chiral drugs. J. Pharm. Sci.86, 1073–1078 (1997). ArticleCASPubMedGoogle Scholar
  40. Abgada, C. O. & York, P. Dehydration of theophylline monohydrate powder: effects of particle size and sample weight. Int. J. Pharm.106, 33–40 (1994). ArticleGoogle Scholar
  41. Sun, C. & Grant, D. J. W. Improved tableting properties of p-hydroxybenzoic acid by water of crystallization — a molecular insight. Pharm. Res. (in the press).
  42. Bandopadhyay, R. & Grant, D. J. W. Plasticity and slip system of plate-shaped crystals of L -lysine monohydrochloride dihydrate. Pharm. Res.19, 491–496 (2002). ArticleGoogle Scholar
  43. Sun, C. & Grant, D. J. W. Influence of crystal structure on the tableting properties of sulfamerazine polymorphs. Pharm. Res., 18, 274–280 (2001). ArticleCASPubMedGoogle Scholar
  44. Cullity, B. D. Elements of X-ray Diffraction 3rd edn (Prentice Hall, New Jersey, 2001). Provides an excellent introduction to crystal structures and X-ray crystallography.Google Scholar
  45. Buerger, M. J. Elementary Crystallography 253–273 (Wiley Interscience, New York, 1963). Google Scholar
  46. Zorky, P. M. Symmetry, pseudosymmetry and hypersymmetry of organic crystals. J. Mol. Struct.374, 9–28 (1996). CASGoogle Scholar
  47. Cambridge Crystallographic Data Centre, Cambridge Structural Database, University Chemical Laboratory, Cambridge, UK (1999). This databank includes more than 250,000 crystal structures and is a site reference for crystal structure reports.
  48. Perlstein, J. in Crystal Engineering: from Molecules and Crystals to Materials NATO Science Series C Vol. 538 (eds Braga, D., Grepini, F. & Orpen, G. A.) 23–42 (Kluwer Academic, Boston, 1999). Google Scholar
  49. Buckingham, A. D. in Crystal Engineering: the Design and Application of Functional Solids NATO Science Series C Vol. 539 (eds Seddon, K. R. & Zaworotko, M.) 49–68 (Kluwer Academic, Boston, 1999). BookGoogle Scholar
  50. Pimental, G. C. & McClennan, A. L. The Hydrogen Bond (W. H. Freeman, San Francisco, 1960). Google Scholar
  51. Scheiner, S. Hydrogen Bonding: A Theoretical Perspective (Oxford Univ. Press, Oxford, 1997). Google Scholar
  52. Desiraju, G. R. Hydrogen bridges in crystal engineering: interactions without borders. Acc. Chem. Res.35, 565–573 (2002). ArticleCASPubMedGoogle Scholar
  53. Jeffrey, G. A. An Introduction to Hydrogen Bonding (Oxford Univ. Press, New York, 1997). Google Scholar
  54. Desiraju, G. R. & Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology (IUCr Monographs on Crystallography 9) 15–47 (Oxford Univ. Press, New York, 1999). Google Scholar
  55. Beyer, A., Karpfen, A. & Schuster, P. Energy surfaces of hydrogen complexes in the vapour phase. Topics Curr. Chem.120, 1–40 (1984). ArticleCASGoogle Scholar
  56. Perlstein, J. Molecular self-assemblies 4. Using Kitaigorodskii's Aufbau principle for quantitatively predicting the packing geometry of semiflexible organic molecules in translation monolayer aggregates. J. Am. Chem. Soc.116, 11420–11432 (1994). ArticleCASGoogle Scholar
  57. Smith, E. R. Electrostatic energy in ionic crystals. Proc. R. Soc. Lond. A375, 475–505 (1981). ArticleCASGoogle Scholar
  58. Haleblian, J. K. & McCrone, W. C. Pharmaceutical applications of polymorphism. J. Pharm. Sci.58, 911–929 (1969). ArticleCASPubMedGoogle Scholar
  59. Burger, A. & Ramberger, R. On the polymorphism of pharmaceuticals and other molecular crystals. I. Theory of thermodynamic rules. Mikrochim. ActaII, 259–271 (1979). ArticleGoogle Scholar
  60. Burger, A. & Ramberger, R. On the polymorphism of pharmaceuticals and other molecular crystals. II. Applicability of thermodynamic rules. Mikrochim. ActaII, 273–316 (1979). ArticleGoogle Scholar
  61. Henck, J. O. & Kuhnert-Brandstatter, M. Demonstration of the terms enantiotropy and monotropy in polymorphism research exemplified by flurbiprofen. J. Pharm. Sci.88, 103–108 (1999). ArticleCASPubMedGoogle Scholar
  62. Yu, L., Reutzel, S. M. & Stephenson, G. A. Physical characterization of polymorphic drugs: an integrated characterization strategy. Pharm. Sci. Technol. Today1, 118–127 (1998). ArticleCASGoogle Scholar
  63. Grunenberg, A., Henck, J. O. & Siesler, H. W. Theoretical derivation and practical application of energy/temperature diagrams as an instrument in preformulation studies of polymorphic drug substances. Int. J. Pharm.129, 147–158 (1996). ArticleCASGoogle Scholar
  64. Yu, L. Inferring thermodynamic stability relationship of polymorphs from melting data. J. Pharm. Sci.84, 966–974 (1995). ArticleCASPubMedGoogle Scholar
  65. Gu, C. H., Young, V. Jr & Grant, D. J. W. Polymorph screening: influence of solvents on the rate of solvent-mediated polymorphic transformation. J. Pharm. Sci.90, 1878–1890 (2001). ArticleCASPubMedGoogle Scholar
  66. Toscani, S. An up-to-date approach to drug polymorphism. Thermochim. Acta321, 73–79 (1998). ArticleCASGoogle Scholar
  67. Stahl, P. H. in Towards Better Safety of Drugs and Pharmaceutical Products (ed. Braimer, D. D.) 265–280 (Elsevier/North-Holland Biomedical, Amsterdam, 1980). Google Scholar
  68. Giron, D. et al. Solid state characterizations of pharmaceutical hydrates. J. Thermal Anal. Cal.68, 453–465 (2002). ArticleCASGoogle Scholar
  69. Morris, K. & Rodriguez-Hornedo, N. in Encyclopaedia of Pharmaceutical Technology Vol. 7 (eds Swarbrick, J. & Boylan, J. C.) 393–440 (Marcel Dekker, New York, 1993). Google Scholar
  70. Florey, K. in Analytical Profiles of Drug Substances Vol. 2 (ed. Florey, K.) 1–62 (Academic, New York, 1973). Google Scholar
  71. Sugawara, Y., Kamiya, N., Iwasaki, H., Ito, T. & Satow, Y. Humidity controlled reversible structure transition of disodium adenosine 5'-triphosphate between dihydrate and trihydrate in a single crystal state. J. Am. Chem. Soc.113, 5440–5445 (1991). ArticleCASGoogle Scholar
  72. Sun, C., Zhou, D., Grant, D. J. W. & Young, V. G. Jr. Theophylline monohydrate. Acta Cryst. E58, O368–O370 (2002). ArticleCASGoogle Scholar
  73. Cox, J. S. G., Woodgard, G. D. & McCrone, W. C. Solid state chemistry of cromolyn sodium (disodium cromoglycate). J. Pharm. Sci.60, 1458–1465 (1971). ArticleCASPubMedGoogle Scholar
  74. Stephenson, G. A. & Diseroad, B. A. Structural relationship and desolvation behaviour of cromolyn cefazolin and fenoprofen sodium hydrates. Int. J. Pharm.198, 167–177 (2000). ArticleCASPubMedGoogle Scholar
  75. Chen, L. R., Young, V. G., Lechuga-Ballesteros, D. & Grant, D. J. W. Solid state behavior of cromolyn sodium hydrates. J. Pharm. Sci.88, 1191–1200 (1999). ArticleCASPubMedGoogle Scholar
  76. Zhu, J., Padden, B. E., Munson, E. J. & Grant, D. J. W. Physicochemical characterization of nedocromil bivalent metal salt hydrates. 2. Nedocromil zinc. J. Pharm. Sci.86, 418–428 (1997). ArticleCASPubMedGoogle Scholar
  77. Khankari, R. K., Ojala, W. H., Gleason, W. B. & Grant, D. J. W. Crystal structure of nedocromil sodium heptahemihydrate and its comparison with that of nedocromil sodium trihydrate. J. Chem. Crystallogr.25, 859–866 (1995). ArticleGoogle Scholar
  78. Ahlqvist, M. U. A. & Taylor, L. S. Water dynamics in channel hydrates investigated using H/D exchange. Int. J. Pharm.241, 253–261 (2002). ArticleCASPubMedGoogle Scholar
  79. Li, Z. J. & Grant, D. J. W. Relationship between physical properties and crystal structures of chiral drugs. J. Pharm. Sci.86, 1073–1078 (1997). ArticleCASPubMedGoogle Scholar
  80. Reddy, I. K., Kommuru, T. R., Zaghloul, A. A. & Khan, M. A. Chirality and its implications in transdermal drug development. Crit. Rev. Ther. Drug Carrier Syst.17, 285–325 (2000). ArticleCASPubMedGoogle Scholar
  81. Collet, A. & Vigne-Maeder, F. Increase of the occurrence of spontaneous resolution due to the crystallization of racemates under high pressure. New J. Chem.19, 877–880 (1995). CASGoogle Scholar
  82. Jacques, J., Collet, A. & Wilen, S. H. Enantiomers, Racemates, and Resolutions 3–213 (John Wiley & Sons, New York, 1981). Google Scholar
  83. Burger, A., Rollinger, J. M. & Brueggeller, P. Binary system of (R)- and (S)-nitrendipine-polymorphism and structure. J. Pharm. Sci.86, 674–679 (1997). ArticleCASPubMedGoogle Scholar
  84. Kuhnert-Brandstaetter, M. & Ulmer, R. Contribution to the thermal analysis of optical antipodes-mandelic acid. Mikrochim. Acta5, 927–935 (1974). ArticleGoogle Scholar
  85. Langhammer, L. Binary systems of enantiomeric nicotine derivatives. Arch. Pharm.308, 933–939 (1975). ArticleCASGoogle Scholar
  86. Zhang, G. G. Z., Paspal, S. Y. L., Suryanarayanan, R. & Grant, D. J. W. Racemic species of sodium ibuprofen: characterization and polymorphic relationships. J. Pharm. Sci.92, 1356–1366 (2003). ArticleCASPubMedGoogle Scholar
  87. Jacques, J. & Gabard, J. Optical antipode mixtures. III. Solubility diagrams for several types of racemates. Bull. Soc. Chim. Fr.1, 342–350 (1972). Google Scholar
  88. Flack, H. D. Chiral and achiral crystal structure. Helv. Chim. Acta86, 907–921 (2003). ArticleGoogle Scholar
  89. Bel'skii, V. K. & Zorkii, P. M. Distribution of organic homomolecular crystals by chiral types and structural classes. Acta Cryst.A33, 1004–1006 (1977). CASGoogle Scholar
  90. Stout, G. H. & Jensen, L. H. X-Ray Structure Determination: A Practical Guide 2nd edn (John Wiley & Sons, New York, 1989). Google Scholar
  91. Fagan, P. G., Hammond, R. B., Roberts, K. J., Docherty, R. & Edmondson, M. in Crystal Growth of Organic Materials Third International Workshop on Crystal Growth of Organic Materials Conference (eds Myerson, A., Green, D.A. & Meenan, P.) 22–27 (Oxford Univ. Press, New York, 1996). Google Scholar
  92. Jones, P. G. Crystal growing. Chem. Br.17, 222–225 (1981). Describes the common methods for growing single crystals.CASGoogle Scholar
  93. Threlfall, T. L. Analysis of organic polymorphs, a review. Analyst120, 2435–2460 (1995). ArticleCASGoogle Scholar
  94. Guillory, J. K. in Polymorphism in Pharmaceutical Solids (ed. Brittain, H. G.) 183–226 (Marcel Dekker, New York, 1999). Google Scholar
  95. Mullin, J. W. Crystallization 4th edn (Butterworth–Heinemann, Boston, 2001). Google Scholar
  96. Mitchell, C. A., Yu, L. & Ward, M. D. Selective nucleation and discovery of organic polymorphs through epitaxy with single crystal substrate. J. Am. Chem. Soc.123, 10830–10839 (2001). ArticleCASPubMedGoogle Scholar
  97. Hilden, J. L. et al. Capillary precipitation of a highly polymorphic organic compound. Cryst. Growth Des.3, 921–926 (2003). ArticleCASGoogle Scholar
  98. Zaccaro, J., Matic, J., Myerson, A. S. & Garetz, B. A. Nonphotochemical, laser-induced nucleation of supersaturated aqueous glycine produces unexpected γ-polymorph. Cryst. Growth Des.1, 5–8 (2001). References 96–98 describe newer methods of generating polymorphs: epitaxy, capillary crystallization and laser-induced nucleation.ArticleCASGoogle Scholar
  99. Beckmann, W., Otto, W. & Budde, U. Crystallization of the stable polymorph of hydroxytriendione: seeding process and effects of purity. Org. Process Res. Dev.5, 387–392 (2001). ArticleCASGoogle Scholar
  100. Wang, B., Lu, Z. P., Shi, E. W. & Zhong, W. Z. Twinning morphologies and mechanisms of β-BaB2O4 (BBO) crystal grown by TSSG method. Cryst. Res. Technol.33, 929–935 (1998). ArticleCASGoogle Scholar
  101. Wadhawan, V. K. A tensor classification of twinning in crystals. Acta Cryst. A53, 546–555 (1997). ArticleGoogle Scholar
  102. von Laue, M. Eine quantitative prüfung der theorie für die interferenz-erscheinungen bei röntgenstrahlen. Sitz. Math. Phys. Klasse Bayer. Akad. Wiss. 363–373 (1912).
  103. Bragg, W. L. Diffraction of short electromagnetic waves by a crystal. Proc. Cambridge Philos. Soc.17, 43–57 (1913). CASGoogle Scholar
  104. Giacovazzo, C. Fundamentals of Crystallography (Oxford Univ. Press, New York, 2002). Google Scholar
  105. Hanh, T. International Table of Crystallography Vol. A 5th edn (Kluwer Academic, Dordrecht, 2002). Google Scholar
  106. Sayre, D. in Computational Crystallography (ed. Sayre, D.) 65–140 (Claredon, Oxford, 1982). Google Scholar
  107. Giacovazzo, C. in International Tables for Crystallography 2nd edn Vol. B (ed. Shmueli, U.) 210–234 (Kluwer Academic, Dordrecht, 2002). Google Scholar
  108. Giacovazzo, C. Direct Phasing in Crystallography: Fundamentals and Applications (Oxford Univ. Press, Oxford, 1998). Explains the most common technique for solving crystal structures from single crystal X-ray diffraction patterns.Google Scholar
  109. Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science220, 671–680 (1983). This seminal paper explains the value and the process of simulated annealing.ArticleCASPubMedGoogle Scholar
  110. Catlow, C. R. A., Thomas, J. M., Freeman, C. M., Wright, P. A. & Bell, R. G. Simulating and predicting crystal structures. Proc. R. Soc. Lond. A442, 85–96 (1993). ArticleCASGoogle Scholar
  111. Bond, A. D. & Jones, W. Structure prediction as a tool for solution of the crystal structures of metallo-organic complexes using powder X-ray diffraction data. Acta Cryst. B58, 233–243 (2002). ArticleCASGoogle Scholar
  112. Gavezzotti, A. & Filippini, G. Polymorphic forms of organic crystals at room conditions: thermodynamic and structural implications. J. Am. Chem. Soc.117, 12299–12305 (1995). ArticleCASGoogle Scholar
  113. Lommerse, J. P. M. et al. A test of crystal structure prediction of small organic molecules. Acta Cryst. B56, 697–714 (2000). ArticleCASGoogle Scholar
  114. Giovannini, J., Perrin, M. A., Louer, D. & Leveiller, F. Ab initio crystal structure determination of three pharmaceutical compounds from X-ray powder diffraction data. Mater. Sci. Forum2, 582–587 (2001). ArticleGoogle Scholar
  115. Bond, A. D., Feeder, N., Teat, S. J. & Jones, W. The solid-state structure of 3-hydroxy-4-methyl-2(3H)-thiazolethione: prediction and measurement. Tetrahedron56, 6617–6624 (2000). ArticleCASGoogle Scholar
  116. Motherwell, W. D. S. et al. Crystal structure prediction of small molecules: a second blind test. Acta Cryst. B58, 647–661 (2002). Describes the results from the most recent Cambridge Crystallographic Data Centre (CCDC) workshop for testing the feasibility of the various programs in predicting the crystal structure of three compounds from their individual molecular structures only.ArticleCASGoogle Scholar
  117. Freeman, C. M. & Catlow, C. R. A. Structure predictions in inorganic solids. J. Chem. Soc. Chem. Comm.2, 89–91 (1992). ArticleGoogle Scholar
  118. Gdanitz, R. J. in Theoretical Aspects and Computer Modeling of the Molecular Solid State (ed. Gavezzotti, A.) 185–201 (Wiley, Chichester, 1997). Explains theab initiomethod of crystal structure prediction.Google Scholar
  119. Karfunkel, H. R. & Gdanitz, R. J. Ab initio prediction of possible crystal structures for general organic molecules. J. Comp. Chem.13, 1171–1183 (1992). ArticleCASGoogle Scholar
  120. Smith, E. D. L. et al. The determination of the crystal structure of anhydrous theophylline by X-ray powder diffraction with a systematic search algorithm, lattice energy calculations, and 13 C and 15 N solid-state NMR: a question of polymorphism in a given unit cell. J. Phys. Chem. B105, 5818–5826 (2001). ArticleCASGoogle Scholar
  121. Ko, G. H. & Fink, W. H. A combined quantum chemistry and classical molecular interaction energy method for the determination of crystal geometries and energies. J. Chem. Phys.116, 747–754 (2002). ArticleCASGoogle Scholar
  122. Gavezzotti, A. Organic crystals: engineering and design. Curr. Opin. Solid State Mater. Sci.1, 501–505 (1996). ArticleCASGoogle Scholar
  123. Buttar, D., Charlton, M. H., Docherty, R. & Starbuck, J. Theoretical investigations of conformational aspects of polymorphism. Part 1: o-acetamidobenzamide. J. Chem. Soc. Perkin Trans. I2, 763–772 (1998). ArticleGoogle Scholar
  124. Childs, S. L. Nonbonded Interactions in Molecular Crystal Structures (Emory Univ., Atlanta, 2001). Google Scholar
  125. Filippini, G., Gavezzotti, A. & Novoa, J. J. Modelling the crystal structure of the 2-hydronitronylnitroxide radical (HNN): observed and computer-generated polymorphs. Acta Cryst. B55, 543–553 (1999). ArticleCASGoogle Scholar
  126. Gavezzotti, A. Methods and current trends in the simulation and prediction of organic crystal structures. Nova Acta Leopold.79, 33–46 (1999). CASGoogle Scholar
  127. Gao, D. W. & Donald, E. Molecular packing groups and ab initio crystal-structure prediction. Acta Cryst. A55, 621–627 (1999). ArticleCASGoogle Scholar
  128. Williams, D. E. I. in Crystal Engineering: From Molecules and Crystals to Materials NATO Science Series C Vol. 538 (eds Braga, D., Grepini, F. & Orpen, G. A.) 295–310 (Kluwer Academic, Boston, 1999). BookGoogle Scholar
  129. Mooij, W. T. M., van Eijck, B. P. & Kroon, J. Ab initio crystal structure predictions for flexible hydrogen-bonded molecules. J. Am. Chem. Soc.122, 3500–3505 (2000). ArticleCASGoogle Scholar
  130. Allen, F. H., Kennard, O. & Taylor, R. Systematic analysis of structural data as a research technique in organic chemistry. Acc. Chem. Res.16, 146–153 (1983). ArticleCASGoogle Scholar
  131. Sarma, J. A. R. P. & Desiraju, G. R. The supramolecular synthon approach to crystal structure prediction. Cryst. Growth Des.2, 93–100 (2002). ArticleCASGoogle Scholar
  132. Mooij, W. T. M., van Eijck, B. P. & Kroon, J. Transferable ab initio intermolecular potentials. 2. Validation and application to crystal structure prediction. J. Phys. Chem. A103, 9883–9890 (1999). ArticleCASGoogle Scholar
  133. Leusen, F. J. J. Ab initio prediction of polymorphs. J. Cryst. Growth166, 900–903 (1996). ArticleCASGoogle Scholar
  134. Dong, Z. et al. Crystal structure of neotame anhydrate polymorph G. Pharm. Res.19, 1549–1553 (2002). ArticleCASPubMedGoogle Scholar
  135. Chin, D. N. Improving the efficiency of predicting hydrogen-bonded organic molecules. Trans. Am. Cryst. Assoc.33, 33–43 (1999). Google Scholar
  136. Gdanitz, R. J. Prediction of molecular crystal structures by Monte Carlo simulated annealing without reference to diffraction data. Chem. Phys. Lett.190, 391–396 (1992). Explains the application of the Monte Carlo method in predicting crystal structures.ArticleCASGoogle Scholar
  137. Hammond, R. B., Roberts, K. J., Docherty, R. & Edmondson, R. B. in Crystal Growth of Organic Materials International Workshop 4th edn (ed. Ulrich, J.) 53–60 (Shaker, Aachen, 1997). Google Scholar
  138. Hammond, R. B. et al. Determining the crystal structures of organic solids using x-ray powder diffraction together with molecular and solid state modeling techniques. Molecular Crystals and Liquid Crystals Science and Technology A356, 389–405 (2001). Google Scholar
  139. Harris, K. D. M. & Tremayne, M. Crystals structure determination from powder diffraction data. Chem. Mater.8, 2554–2570 (1996). Explains the prediction of the crystal structure of compounds from their powder diffraction data only.ArticleCASGoogle Scholar
  140. Aakeroy, C. B., Beatty, A. M., Tremayne, M., Rowe, D. M. & Seaton, C. C. A combination of X-ray single crystal diffraction and Monte Carlo structure solution from X-ray powder diffraction data in a structural investigation of 5-bromonicotinic acid and solvates thereof. Cryst. Growth Des.1, 377–382 (2001). ArticleCASGoogle Scholar
  141. Will, G. POWLS: a powder least-squares program. J. Appl. Cryst.12, 483–485 (1979). ArticleCASGoogle Scholar
  142. Pawley, G. S. Unit-cell refinement from powder diffraction scans. J. Appl. Cryst.14, 357–361 (1981). ArticleCASGoogle Scholar
  143. Langford, J. I. & Louer, D. High-resolution powder diffraction studies of copper (II) oxide. J. Appl. Cryst.24, 149–155 (1991). ArticleCASGoogle Scholar
  144. Langford, J. I., Cernik, R. J. & Louer, D. The breadth and shape of instrumental line profiles in high-resolution powder diffraction. J. Appl. Cryst.24, 912–918 (1991). CASGoogle Scholar
  145. Will, G., Parrish, W. & Huang, T. C. Crystal-structure refinement by profile fitting and least-squares analysis of powder diffractometer data. J. Appl. Cryst.16, 611–622 (1983). ArticleCASGoogle Scholar
  146. Langford, J. I., Louer, D., Sonneveld, E. J. & Visser, J. W. Applications of total pattern fitting to a study of crystallite size and strain in zinc oxide powder. Powder Diffract.1, 211–221 (1986). ArticleCASGoogle Scholar
  147. David, W. I. F., Shankland, K. & Shankland, N. Routine determination of molecular crystal structures from powder diffraction data. Chem. Commun. (Camb.)8, 931–932 (1998). ArticleGoogle Scholar
  148. Shankland, K., David, W. I. F. & Csoka, T. Crystal structure determination from powder diffraction data by the application of a genetic algorithm. Zeit. fuer Kristall.212, 550–552 (1997). CASGoogle Scholar
  149. Harris, K. D. M., Johnston, R. L. & Kariuki, B. M. The genetic algorithm: foundations and applications in structure solution from powder diffraction data. Acta Cryst. A54, 632–645 (1998). Explains the use of the genetic algorithm for predicting the crystal structure of compounds from their powder diffraction pattern.ArticleGoogle Scholar
  150. Hammond, R. B., Roberts, K. J., Docherty, R. & Edmondson, M. Computationally assisted structure determination for molecular materials from X-ray powder diffraction data. J. Phys. Chem. B101, 6532–6536 (1997). ArticleCASGoogle Scholar
  151. Harris, K. D. M., Tremayne, M., Lightfoot, P. & Bruce, P. G. Crystal structure determination from powder diffraction data by Monte Carlo methods. J. Am. Chem. Soc.116, 3543–3547 (1994). ArticleCASGoogle Scholar
  152. Harris, K. D. M., Johnston, R. L., Kariuki, B. M. & Tremayne, M. A genetic algorithm for crystal structure solution from powder diffraction data. J. Chem. Res. Synop.7, 390–391 (1998). ArticleGoogle Scholar
  153. Harris, K. D. M. et al. Recent advances in opportunities for solving molecular crystal structures directly from powder diffraction data: new insights in crystal engineering contexts. Cryst. Eng. Comm.4, 356–367 (2002). ArticleCASGoogle Scholar
  154. Turner, G. W., Tedesco, E., Harris, K. D. M., Jonhston, R. L. & Kariuki, B. M. Implementation of Lamarckian concepts in a genetic algorithm for structure solution from powder diffraction data. Chem. Phys. Lett.321, 183 (2000). ArticleCASGoogle Scholar
  155. Habershon, S., Turner, G. W., Harris, K. D. M., Johnston, R. L. & Johnston, J. M. Gaining insights into the evolutionary behavior in genetic algorithm calculations, with applications in structure solution from powder diffraction data. Chem. Phys. Lett.353, 185–194 (2002). ArticleCASGoogle Scholar
  156. Lanning, O. J. et al. Definition of a 'guiding function' in global optimization: a hybrid approach combining energy and R-factor in structure solution from powder diffraction data. Chem. Phys. Lett.317, 296–303 (2000). ArticleCASGoogle Scholar
  157. Gilmore, C. Maximum entropy and Bayesian statistics in crystallography: a review of practical applications. Acta Cryst. A52, 561–589 (1996). Explains the use of the maximum entropy algorithm for the prediction of the crystal structures of compounds and reviews its application.ArticleGoogle Scholar
  158. Gilmore, C. J., Shankland, K. & Bricogne, G. Applications of the maximum entropy method to powder diffraction and electron crystallography. Proc. R. Soc. Lond. A442, 97–111 (1993). ArticleCASGoogle Scholar
  159. Presented at the fifteenth annual meeting of the National Science Teachers Association, 1966 in New York City, and reprinted from The Physics Teacher Vol. 7, issue 6, 1968, pp. 313–320 by permission of the editor and the author.
  160. Braga, D., Desiraju, G. R., Miller, J. S., Guy Orpen, A. & Price, S. Innovation in crystal engineering. Cryst. Eng. Comm.4, 500–509 (2002). ArticleCASGoogle Scholar
  161. Pepinsky, R. Crystal engineering-new concept in crystallography. Phys. Rev. II100, 971 (1955). CASGoogle Scholar
  162. Schmidt, G. M. J. Photodimerization in solid state. Pure Appl. Chem.647, 647–678 (1971). ArticleGoogle Scholar
  163. Panunto, T. W., Lipkowska, Z. U., Johnson, R. & Etter, M. C. Hydrogen-bond formation in nitroanilines: the first step in designing acentric materials. J. Am. Chem. Soc.109, 7786–7797 (1987). ArticleCASGoogle Scholar
  164. Braga, D. & Fabrizia, G. in Crystal Engineering: From Molecules and Crystals to Materials (eds Braga, D., Grepioni, F. & Guy Orpen, A.) 421–441 (Kluwer Academic, Boston, 1999). Comprehensive work summarizing the recent achievements and future trends in crystal engineering.BookGoogle Scholar
  165. Desiraju, G. R. Supramolecular synthons in crystal engineering — a new organic synthesis. Angew. Chem. Int. Edn Eng.34, 2311–2327 (1995) ArticleCASGoogle Scholar
  166. Walsh, B. R. D. et al. Crystal engineering of the composition of pharmaceutical phases. Chem. Commun.2, 186–187 (2003). ArticleCASGoogle Scholar
  167. Bis, J. A., Shattock, T. R. & Zaworotko, M. J. Design of binary crystals that contain pharmaceutical molecules, Abstracts of Papers, 225th ACS National Meeting, New Orleans, LA, United States, March 23–27 (2003).
  168. McMahon, J. A. & Zaworotko, M. J. Crystal engineering of novel pharmaceutical phases, Abstracts of Papers, 225th ACS National Meeting, New Orleans, LA, United States, March 23–27 (2003).
  169. Fleischman, S., Morales, L. A. & Zaworotko, M. J. Crystal engineering of binary crystals that contain pharmaceutical molecules, Abstracts of Papers, 223rd ACS National Meeting, Orlando, FL, United States, April 7–11 (2002).
  170. Remenar, J. F. et al. Crystal engineering of novel cocrystals of a triazole drug with 1,4-dicarboxylic acids. J. Am. Chem. Soc.125, 8456–8457 (2003). ArticleCASPubMedGoogle Scholar
  171. Payne, R. S., Roberts, R. J. & Rowe, R. C. The mechanical properties of two forms of primidone predicted from their crystal structures. Int. J. Pharm.145, 165–173 (1996). ArticleCASGoogle Scholar
  172. Roberts, R. J., Payne, R. S. & Rowe, R. C. Mechanical property predictions for polymorphs of sulphathiazole and carbamazepine. Eur. J. Pharm. Sci.9, 277–283 (2000). ArticleCASPubMedGoogle Scholar
  173. Roberts, R. J., Rowe, R. C. & Kendall, K. Brittle–ductile transitions in die compaction of sodium chloride. Chem. Eng. Sci.44, 1647–1651 (1989). ArticleCASGoogle Scholar
  174. Roberts, R. J. & Rowe, R. C. Determination of the critical stress intensity factor (KIC) of microcrystalline cellulose using radially edge-cracked tablets. Int. J. Pharm.52, 213–219 (1989). ArticleCASGoogle Scholar
  175. Bassam, F., York, P., Rowe, R. C. & Roberts, R. J. Young's modulus of powders used as pharmaceutical excipients. Int. J. Pharm.64, 55–60 (1990). ArticleCASGoogle Scholar
  176. Roberts, R. J., Rowe, R. C. & York, P. The relationship between Young's modulus of elasticity of organic solids and their molecular structure. Powder Technol.65, 139–146 (1991). ArticleCASGoogle Scholar
  177. Nangia, A. Database research in crystal engineering. Cryst. Eng. Comm.4, 93–101 (2002). ArticleCASGoogle Scholar
  178. Gavezzotti, A. Ten years of experience in polymorph prediction: what next? Cryst. Eng. Comm.4, 343–347 (2002). ArticleCASGoogle Scholar
  179. Rohl, A. L. Computer prediction of crystal morphology. Curr. Opin. Solid State Mater. Sci.7, 21–26 (2003). ArticleCASGoogle Scholar
  180. Rajeswaran, M. et al. Three-dimensional structure determination of N-(p-tolyl)-dodecylsulfonamide from powder diffraction data and validation of structure using solid-state NMR spectroscopy. J. Am. Chem. Soc.124, 14450–14459 (2002). ArticleCASPubMedGoogle Scholar
  181. Tishmack, P. A., Bugay, D. E. & Byrn, S. R Solid-state nuclear magnetic resonance spectroscopy — pharmaceutical applications. J. Pharm. Sci.92, 441–474 (2003). ArticleCASPubMedGoogle Scholar
  182. Reutzel-Edens, S. M. & Bush, J. K. Solid-state NMR spectroscopy of small molecules: from NMR crystallography to the characterization of solid oral dosage forms. Am. Pharm. Rev.5, 112–115 (2002). CASGoogle Scholar
  183. Bugay, D. E. Characterization of the solid-state:spectroscopic techniques. Adv. Drug Del. Rev.48, 43–65 (2001). ArticleCASGoogle Scholar
  184. Taylor, L. S. & Langklide, F. W. Evaluation of solid-state forms present in tablets by Raman spectroscopy. J. Pharm. Sci., 89, 1342–1353 (2000). ArticleCASPubMedGoogle Scholar
  185. Kempf, D. J. et al. ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans. Proc. Natl Acad. Sci. USA92, 2484–2488 (1995). ArticleCASPubMedPubMed CentralGoogle Scholar
  186. Chemburkar, S. R. et al. Dealing with the impact of ritonavir polymorphs on the late stages of bulk drug process development. Org. Process Res. Dev.4, 413–417 (2000). ArticleCASGoogle Scholar
  187. Young, A. The Rietveld Method International Union of Crystallography (Oxford Univ. Press, New York, 1993). Explains the Rietveld refinement method in detail.Google Scholar
  188. McCusker, L. B., von Dreele, R. B., Cox, D. E., Louer, D. & Scardi, P. Rietveld refinement guidelines. J. Appl. Cryst.32, 36–50 (1999). ArticleCASGoogle Scholar
  189. Stephenson, G. A. & Young, R. Potential applications of Rietveld analysis in the pharmaceutical industry. Am. Pharm. Rev.4, 46–51 (2001). CASGoogle Scholar
  190. Kisi, E. H. Rietveld analysis of powder diffraction patterns. Mater. Forum18, 135–153 (1994). CASGoogle Scholar
  191. Rietveld, H. M. Profile refinement method for nuclear and magnetic structures. J. Appl. Cryst.2, 65–71 (1969). ArticleCASGoogle Scholar

Acknowledgements

We thank A. Sheth for kindly reviewing the manuscript and for his valuable suggestions.